Journal Publications

Practical design considerations for secondary air injection in wood-burning cookstoves: An experimental study

We use a modular cookstove platform to experimentally quantify the practical secondary air injection design requirements to reduce harmful emissions by at least 90% relative to a traditional cooking fire.

A Low Cost, Re-usable, Electricity-Free Infant Warmer: Evaluation of Safety, Effectiveness, and Feasibility

The efficacy of a low-cost, re-usable, and non-electric infant warmer is evaluated in a hospital setting to prevent neonatal hypothermia. It is capable of maintaining 37 C for approximately six hours when a parent is not available for skin-to-skin care.

Optimization of Secondary Air Injection in a Wood-Burning Cookstove: An Experimental Study

This research parametrically investigates the effect of secondary air injection on the mass and size distribution of PM emitted during solid biomass combustion using a modular, experimental wood-burning cookstove platform.

Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

This paper investigates the effect of air injection on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Although air injection can decrease total PM mass emitted, it is unclear if it reduces the number concentration of all PM emission sizes uniformly or concurrently increase the number of ultrafine particles per mass of fuel burned, which may be more harmful to human health.

Investigation of biofuels from microorganism metabolism for use as anti-knock additives

This paper investigates the anti-knock properties of biofuels that can be produced from microorganism metabolic processes. The biofuels are rated using Research Octane Number (RON) and Blending Research Octane Number (BRON), which determine their potential as additives for fuel in spark ignition (SI) engines.

Research Octane Number of Primary and Mixed Alcohols from Biomass based Syngas

The performance of primary alcohols was experimentally determined using the research octane number (RON) and the blending research octane number (BRON). The primary alcohol mixture, or “AlcoMix,” consists of 75% ethanol, 11% 1-propanol, 8% 1-butanol, and 6% 1-pentanol and was approved by the U.S. EPA for use in blending with gasoline.

Predicting fuel performance for future HCCI engines

The purpose of this research is to investigate the impact of fuel composition on auto-ignition in homogeneous charge compression ignition (HCCI) engines in order to develop a future metric for predicting fuel performance in future HCCI engine technology.

Extending Lean Operating Limit and Reducing Emissions of Methane Spark-Ignited Engines Using a Microwave-Assisted Spark Plug

A microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of 1.46, 1.51, 1.57 1.68, and 1.75.

Extending the lean operation limits of a gasoline engine using a microwave-assisted sparkplug

We investigated the extension of the lean stability limits of gasoline-air mixtures using a microwave-assisted spark plug. Experiments are conducted on a 1200 RPM single-cylinder Waukesha Cooperative Fuel Research (CFR) engine at two compression ratios: 7:1 and 9:1; and four different levels of microwave energy input per cycle.

Increased Efficiency in SI Engine with Air Replaced by Oxygen in Argon Mixture

We investigate the role of both the compression ratio and the specific heat ratio on engine efficiency by conducting experiments comparing operation of a single-cylinder variable-compression-ratio engine with both hydrogen-air and hydrogen-oxygen-argon mixtures.

Development and Validation of a Reduced DME Mechanism Applicable to Various Combustion Modes in Internal Combustion Engines

A 28-species reduced chemistry mechanism for Dimethyl Ether (DME) combustion is developed on the basis of a recent detailed mechanism by Zhao et al. (2008).

An Estimate of Natural Gas Methane Emissions from California Homes

We estimate postmeter methane (CH4) emissions from California’s residential natural gas (NG) system using measurements and analysis from a sample of homes and appliances.

Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

The purpose of this article is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations.

Theoretical Minimum Thermal Load in Buildings

We propose a new framework that determines the minimum thermal energy required to keep building occupants comfortable. This framework provides benchmarks and is used to highlight opportunities that go beyond energy efficient technology and designs.

Design, Construction and Testing of a Desktop Supersonic Wind Tunnel

A mobile and affordable, miniature wind tunnel to aid students in studying high-speed compressible flows was constructed and tested. Millimeter-sized nozzles of different contours were fabricated to produce supersonic flows at Mach 2.

© 2021 by Vi H. Rapp

  • Twitter
  • LinkedIn Clean Grey